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Abstract
IOMMU has been introduced to thwart DMA attacks. How-
ever, the performance degradation prevents it from being en-
abled on most systems. Even worse, recent studies show that
IOMMU is still vulnerable to sub-page and deferred invalida-
tion attacks, posing threats to systems with IOMMU enabled.

This paper aims to provide a lightweight and secure so-
lution to defend against DMA attacks. Based on our mea-
surement and characterizing of DMA behavior, we propose
DMAAUTH, a lightweight pointer integrity-based hardware-
software co-design architecture. DMAAUTH utilizes a novel
technique named Arithmetic-capable Pointer AuthentiCation
(APAC), which protects the DMA pointer integrity while sup-
porting pointer arithmetic. It also places a dedicated hardware
named Authenticator on the bus to authenticate all the DMA
transactions. Combining APAC, per-mapping metadata, and
the Authenticator, DMAAUTH achieves strict byte-grained spa-
tial protection and temporal protection.

We implement DMAAUTH on a real FPGA hardware board.
Specifically, we first realize a PCIe-customizable SoC on
real FPGA, based on which we implement hardware version
DMAAUTH and conduct a thorough evaluation. We also im-
plement DMAAUTH on both ARM and RISC-V emulators to
demonstrate its cross-architecture capability. Our evaluation
shows that DMAAUTH is faster and safer than IOMMU while
being transparent to devices, drivers, and IOMMU.

1 Introduction

Direct memory access (DMA) is a technique of computer
systems that allows the peripheral device to access the main
memory directly. DMA does not require CPU involvement
during memory access and thus significantly reduces CPU
occupancy. Therefore, DMA has been widely used on almost
all computer systems, including large servers, personal com-
puters, and mobile smartphones [12, 31].

However, the performance gain of DMA also comes with
a price. DMA exposes the physical memory directly to the de-
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vices, bypassing all MMU-based protection (i.e., paging). All
devices plugged into the host arbitrarily read/write the physi-
cal memory [9, 34]. To defeat DMA attacks, the Input/Output
Memory Management Unit (IOMMU) has been introduced,
which maps the physical memory to I/O virtual addresses
(IOVAs) and gives the IOVAs to the peripheral devices [11].
Hence, the device cannot access the physical memory directly,
and the access scope is limited to the mapped I/O pages.
IOMMU is effective in defending against DMA attacks and
has become the de facto approach for DMA protection.

However, recent research shows that IOMMU is not en-
abled on most systems, including Windows, Linux, and
FreeBSD, due to performance concerns caused by IOVA trans-
lation and the slow IOTLB invalidation [12, 31]. Even when
the IOMMU is enabled, the system protected by the IOMMU
still suffers from both spatial and temporal attacks [3]. The
page-grained-mapping nature of IOMMU allows a malicious
device to access kernel objects that coexist on the same page
with I/O buffers, leading to spatial sub-page attacks. The
deferred IOTLB invalidation allows the device to access un-
mapped pages in the deferred time windows, leading to tempo-
ral deferred-invalidation attacks. Hence, how to defeat DMA
attacks efficiently and thoroughly remains an open question.

To answer this question, this paper aims to provide a solu-
tion to address DMA security problems, which, in the mean-
time, is lightweight enough to be applied in an actual pro-
duction environment. To achieve this goal, we first character-
ize the DMA behavior from devices of different types to see
whether existing integrity-based or baggy-bounds-based meth-
ods are applicable. Our results show that 75.2% of requests
are via DMA pointers plus an offset (termed the pointer arith-
metic). At the same time, the number of coexisting mapped
buffers is small (≤ 435), and the size ranges from 1B to about
520KB, while 68.7% of the buffer sizes are neither multiple-
page-sized nor 2n-sized. These results indicate that the exist-
ing methods are not feasible.

Based on measurement results, we propose DMAAUTH, a
lightweight hardware-software co-design architecture that
achieves byte-grained bound checking and strict temporal

1



integrity on DMA pointers. DMAAUTH can thus defeat the
DMA attacks that IOMMU suffers from, including the sub-
page attacks and the deferred-invalidation attacks. In our
design, a dedicated hardware named Authenticator is placed
on the bus to authenticate all the DMA transactions, with the
signature on the DMA pointers and corresponding metadata
maintained by the OS kernel.

We face two challenges when designing and implementing
DMAAUTH. First, the kernel loses control of DMA pointers
once they are passed to the peripheral devices. In other words,
devices can fake DMA pointers for memory access. Even
with IOMMU, the malicious device can still forge an out-of-
bound pointer to launch sub-page attacks or reuse outdated
pointers to launch temporal attacks [3]. Second, protecting
the pointer integrity while supporting the pointer arithmetic
is difficult. Our characterization shows that benign devices
frequently add offsets to given pointers and then dereference
them for DMA. However, the existing pointer integrity-based
techniques sign the whole pointer [28, 54] and are incompati-
ble with peripheral pointer arithmetic.

To resolve the above challenges, we propose a new tech-
nique termed Arithmetic-capable Pointer Authentication
(APAC), which leverages the pointer signing/authentication
to grant the kernel complete control over the DMA pointers.
APAC only signs the high bits and leaves the lower bits for
arithmetic, overcoming the pointer arithmetic challenges. On
top of APAC, DMAAUTH introduces per-mapping metadata
and combines them to achieve spatial and temporal protection.

To evaluate the efficiency and effectiveness of the pro-
posed techniques, we implement DMAAUTH on a real FPGA
hardware board. Specifically, we first implement a fully func-
tional SoC with customizable PCIe support on FPGA as our
baseline. Based on our SoC, we implement the hardware Au-
thenticator and integrate it into the PCIe bus to authenticate
all PCIe DMA transactions. To enforce the protection, we
protect the Linux DMA APIs to drive the Authenticator and
realize DMAAUTH protection without changing device drivers.
Additionally, DMAAUTH was also developed for RISC-V and
ARM QEMU to demonstrate its cross-architecture capability.

We conduct both security and performance evaluations of
DMAAUTH. The security evaluation shows that DMAAUTH
can defeat all six types of DMA attacks, including the sub-
page and the deferred-invalidation attacks. The performance
evaluation on real hardware shows that DMAAUTH introduces
a 1.0% throughput degradation and a 1.8% CPU runtime
consumption overhead, outperforming the deferred IOMMU
scheme by reducing throughput degradation and CPU over-
head by 82.1% and 68.9%, respectively.

The contributions of this paper are summarized as follows.
• We characterize the DMA of different devices, providing

a knowledge base of the DMA behavior.
• We propose a novel technique named APAC, which is

the first pointer integrity protection scheme that supports
pointer arithmetic.

• We propose a lightweight pointer integrity-based secure
architecture named DMAAUTH, combining APAC and
per-mapping metadata to thwart various DMA attacks.

• We develop a full-fledged PCIe-customizable SoC on
real FPGA hardware, serving as a foundation for future
architecture and system research.

• We implement DMAAUTH on real FPGA hardware based
on our SoC. We also implement an emulator version
of DMAAUTH for both RISC-V and ARM to show its
cross-architectural capability. Our evaluation shows that
DMAAUTH outperforms IOMMU in terms of both secu-
rity and efficiency.

2 Background

2.1 DMA Workflow
DMA is a mechanism that transfers data without the full
participation of the CPU to liberate it from the heavy burden
of copying or moving data. Historically, DMAs were only
configured by CPUs, but afterward, DMAs can also be issued
by peripherals directly or via bus controllers. We use the
Linux kernel as an example to illustrate the lifetime of a
DMA transfer. We divide the whole process into three stages.
Pre-transfer is handled by the CPU and OS kernel. The
dma_map API is called to map the kernel virtual address into
the corresponding DMA pointer. dma_alloc API performs
similar functionality but allocates a buffer in advance. Then,
the kernel sends the DMA pointer to the peripheral and yields
the CPU. If the IOMMU is enabled, the kernel is also responsi-
ble for maintaining the table for IOMMU address translation.
In-transfer is taken over by the peripheral and I/O bus. The
peripheral launch DMAs and perform the actual data transfer
via the bus. When finished, the peripheral informs the CPU
by writing a message in memory or via interruption.
Post-transfer is handled by the CPU and OS kernel again.
The DMA buffer is recycled using dma_unmap and dma_free

API series. In compliance, the device should not reaccess the
buffer. The IOMMU mapping for the buffer is also removed .
Finally, dma_free also frees the DMA buffer after unmapping.

2.2 IOMMU
IOMMU was introduced into modern SoCs in the early 2000s
to map only the specified pages to the device, preventing
malicious devices from accessing unmapped memory [10].
However, IOMMU is still vulnerable due to the assumption
that all the peripherals are parts of the trusted computing base
(TCB) in OS implementations.
Memory management. IOMMUs use page tables to translate
I/O virtual addresses (IOVAs) into physical addresses, similar
to how MMUs translate virtual addresses. For each access
from the peripheral using IOVA, the IOMMU hardware walks
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through its page table level by level and reaches the corre-
sponding physical address. This scheme provides analogous
protection capability as the MMUs; devices cannot access
pages without mapping entry in the IOMMU page table but
can still access contents residing on the same page, resulting
in spatial sub-page vulnerability.
IOTLB cache. To accelerate the translation , an I/O trans-
lation look-aside buffer (IOTLB) is used to cache mappings
from IOVAs to physical addresses. However, in the typical
implementations, the consistency between the IOTLB and the
IOMMU page table has to be maintained by the OS kernels
via flushing the IOTLB after unmapping buffers [1, 4, 6, 21].
Such flushes introduce significant overhead and are thus usu-
ally deferred by default to provide an acceptable performance.
This allows peripherals to access unmapped pages in a time
window, causing temporal deferred invalidation vulnerability.
PCIe ATS. To provide even better performance than the
IOTLB integrated into IOMMU, SoC manufacturers provide
address translation service (ATS) for trusted PCIe devices.
Instead of translating the IOVA to the physical address on
each peripheral memory access, the IOMMU informs the
peripheral of the physical address after the translation. Then,
the PCIe peripheral can choose to store the mapping from the
IOVA to the physical address in its address translation cache
(ATC), and it can launch DMA transactions using physical
addresses directly [4, 6, 21]. But this mechanism exposes
entire physical memory directly, causing bypass vulnerability.
To make things worse, the Linux kernel trusts all the PCIe
devices except those explicitly listed as external ports in the
Advanced Control and Power Interface (ACPI) [15, 52]. This
allows all the PCIe devices plugged into the motherboard to
use the ATS and access the main memory via bare physical
addresses, positioning the entire system in danger.

2.3 DMA Attack
Computer system interconnects various components, includ-
ing the powerful main processing units (such as CPU, GPU,
and NPU), along with other accessory peripherals, which can
be produced and marketed by untrustable manufacturers.

In the early years, without IOMMU protection, systems
allowed all the peripherals to manipulate the main memory
arbitrarily. During this period, DMA attacks were plain and
powerful. Unlocking the OSes and executing arbitrary code
is reachable via overwriting critical data in Windows [8],
macOS [9, 13], FreeBSD [13], and Linux kernels [13, 14].

As discussed, IOMMU provides basic protection, prevent-
ing direct attacks. However, the high overhead introduced by
IOMMU prevents the OSes from adopting it. Linux distri-
butions often turn off the IOMMU protection by default, as
did the different Windows editions [31]. The vulnerability
of Linux further poses millions of Android devices in dan-
ger [12]. This fact reveals the demand for a more lightweight
mechanism that can be applied in actual systems. Further re-
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Figure 1: ARM Pointer Authentication. A hash signature is
calculated by the QARMA encryption engine and embedded
in the high bits of a pointer.

search discovered that even when the IOMMU is enabled, the
sub-page vulnerability and deferred-invalidation vulnerabil-
ity still render the system vulnerable to DMA attacks [3, 31],
urging researchers to design more secure protections.

2.4 Pointer Authentication
Pointer authentication (PA) was first introduced into ARM
v8.3 to ensure the integrity of pointers in AArch64 instruction
set architecture (ISA). PA is an ISA extension that provides
extra instructions for creating and authenticating authorized
pointers. As shown in Figure 1, a signature is calculated
based on the pointer value to authenticate, a 128-bit secret
key, and a 64-bit modifier. Changing one of the three values
results in a difference in the signature, preventing forgery of
pointers. In this paper, we add a new pointer authentication
instruction to meet specific pointer format requirements, but
the methodology is the same as the ARM PA extension.
Signing a pointer. The ARM PA provides different keys for
the different data categories: two for data pointers, another
two for code pointers, and one for general data. For instance,
to create a data pointer with a signature, pacda <pointer>,

<modifier> is used. This instruction specifies the secret key
using d for data pointers and a for the first key. The output
signed pointer is stored in the original pointer’s register.
Authenticating a pointer. To authenticate a pointer, the
instruction autda <pointer>, <modifier> is used to re-
calculate the signature and strip it down from the pointer
if the signature is valid. If the signature is invalid, it will be
kept on the high bits of the pointer. This results in an illegal
pointer and causes translation exceptions when dereferenced.

PA is the basis for many novel security-related works to
ensure pointer integrity [22, 28, 47, 55]. As the effectiveness
and performance of PA have been tested in many scenarios,
developers and researchers have been working on transporting
the mechanism to other platforms [47, 51, 62].

3 Threat Model and Assumptions

In this paper, the attacker fully controls a DMA-capable acces-
sory peripheral device. The attacker can read/write the main
memory via DMA requests. When the IOMMU is absent, the
attacker can forge fake DMA pointers and access all physical
memory directly. When the IOMMU is enabled, the attacker
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exploits the sub-page vulnerability and deferred-invalidation
vulnerabilities to access all mapped pages. The attacker aims
to attack the OS kernel by launching DMA attacks, includ-
ing memory dumping, kernel DoS, data pointer tampering,
control flow hijack, information leaking, etc.

In this paper, we consider two system settings: the one with
no IOMMU and the one with IOMMU enabled. We assume
the main processing units(CPUs and computing accelerators,
such as GPU), main memory, and the bus are trusted, and so
are the enabled IOMMU. The OS kernel and device drivers
running on the CPUs are trusted and use kernel DMA APIs
correctly, as are the firmware running on the accelerators.

4 Characterizing DMA Behavior

We first characterize the DMA behavior of peripherals to
guide the design of protection architectures.

4.1 System Setup

To monitor all the DMA buffers in the Linux kernel, we add
logging logic to all the dma_alloc and dma_map series APIs of
the Linux v6.1 kernel. Thus, all the DMA buffers’ information
can be recorded during the runtime, including the lower and
upper bounds of the buffer, the device holding the buffer, and
how many times the buffer has been mapped.

We intercept DMA transactions from different I/O buses, in-
cluding PCI, PCIe, USB host controller interfaces (HCIs), etc.
For each access, the start address, the length, and the access
type will be recorded for further analysis. The Linux API mod-
ification only adds logging logic and does not impact the orig-
inal DMA behavior. We use Buildroot to setup Linux with the
following common peripherals: Intel E1000E NIC (e1000e),
NVMe disk (nvme), Intel I/O Controller Hub 9 (ich9), QEMU
Enhanced Host Controller Interface (usb-ehci), and other
common USB peripherals like tablet, disks, keyboard and
mouse are connected via the HCI interfaces. Once the emu-
lation starts, our modification in the kernel and the emulator
records all allocation, mapping, and accesses related to DMA,
providing a better understanding of the DMA behavior.

We utilize two widely adopted network and storage bench-
marking tools, iperf31 and fio2, to generate authentic DMA
traffic and furnish realistic workloads for characterization. On
the one hand, iperf3 conducts UDP send and receive opera-
tions with packet sizes ranging from 16B to 1460B, alongside
TCP upload and download tests featuring window sizes rang-
ing from 1KB to 1MiB. On the other hand, fio executes
random and sequential read/write operations with block sizes
spanning from 4KB to 4MiB.

1https://iperf.fr/
2https://github.com/axboe/fio

4.2 Access Characteristics
DMA consists of two parts: the mapping performed by the
kernel and the data transfer conducted by peripherals. We
analyze both parts to characterize DMA.

4.2.1 DMA Mapping Statistics

We analyzed the collected data to determine how many
mapped buffers coexist in the memory. As shown in Table 1,
the peripherals use a limited number of mapped buffers at the
same time. We also read the driver source code of these de-
vices to understand this behavior. The devices usually use I/O
rings to hold descriptors for coexisting mapped buffers. Sim-
ilar characterizing study for GPUs has been conducted [25]
and reveals that the number of buffers used simultaneously
by GPUs is also limited (≤ 34 per kernel) and indexed by 14
bits. DAMN [33] shows the mapped pages are less than 12K.
Finding-1: Peripherals devices use a small number of co-
existing I/O buffers (<500), despite that a large number of
buffers had been mapped then unmapped (>5M).

We also analyzed the size of the mapped buffers, as shown
in Figure 2. We find that the sizes of the mapped buffer vary
significantly from 1 to 524288 bytes. The size of the buffers
is very irregular. Only 30.2% of the buffers are multiple of
page size, and only 28.1% are 2n sized.
Finding-2: Peripherals’ buffer sizes vary greatly, most of
which are neither multipage-sized nor 2n-sized.

The varied and irregular buffer sizes expose sub-page vul-
nerabilities and introduce obstacles to applying page-grained
or 2n-grained protection schemes like Baggy Bounds [2].

4.2.2 DMA Transfer Statistics

As shown in Table 1, peripheral devices often perform DMA
transfer via the given DMA pointers plus an offset (termed
pointer arithmetic). These accesses are mainly caused by the
I/O ring scheme, in which the mapped buffers’ descriptors are
stored in a dedicated memory area. The device is responsible
for reading the data from the area and launching DMA to the
buffers specified by the descriptors.
Finding-3: Peripherals tend to apply pointer arithmetic on
the given DMA pointers, accounting for 75.2% of all.

In our setup, these accesses are mainly fetching metadata
from TX and RX buffers. In this scenario, the device con-
tinuously reads DMA-pointer-size data from a large buffer
(usually one or more pages) for further DMA operations.

5 DMAAUTH Design

5.1 Goals and Challenges
To defeat DMA attacks and allow easy adoption by existing
systems, DMAAUTH needs to meet the following design goals.
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Table 1: DMA memory statistics.

Device Information Pointer Arithmetic Statistics Mappings Statistics

Device DMA Interface With Offset Total Access Ratio Coexisting Mappings Total Mappings

NVMe SSD PCIe (nvme) 4406751 5943096 74.1% 154 1487516
SCSI HDD AHCI (ich9-ahci) 40 67 59.7% 13 15

Mouse and Tablet EHCI (ich9-ehci) 40690 40956 99.4% 6 54
Keyboard UHCI (ich9-uhci) 5066871 6629284 76.4% 5 32
USB Stick EHCI (usb-ehci) 35086 35372 99.2% 5 33

E1000E NIC PCIe (e1000e) 11230518 14985786 74.9% 271 3744537
Total / 20779956 27634561 75.2% 435 5232187
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Figure 2: Sizes of the mapped buffers. The huge difference
and irregularity of the sizes of the mapped buffers indicate
that different buffers are used in highly different ways.

Goal-1: Security. DMAAUTH must defeat both spatial and
temporal DMA attacks. Particularly, DMAAUTH needs to de-
feat all sub-page attacks and deferred-invalidation attacks.
Moreover, DMAAUTH must provide the same security guaran-
tees without IOMMU or with ATS enabled.
Goal-2: Transparency. For easy adoption, DMAAUTH should
require minimum changes on the OS kernels. Moreover, it
should be fully transparent to the peripheral devices, device
drivers, and the IOMMU DMA address translation process to
provide excellent compatibility.
Goal-3: Lightweight. DMAAUTH should have minimum over-
head to be adopted in the actual production environment.

To achieve the above goals, we need to resolve the follow-
ing challenges to achieve DMAAUTH.
Challenge-1: No control on DMA pointers. The kernel loses
control of the pointers once they are passed to the peripherals
via MMIO. In other words, a malicious device can gener-
ate fake pointers arbitrarily and use them for memory access
via DMA. Without IOMMU, the fake pointer can point to
any physical address. Even with IOMMU, the malicious de-
vice can still forge out-of-bound pointers to access the kernel
objects on the same page, leading to sub-page attacks [3].
Challenge-2: Pointer arithmetic compatibility. It is chal-
lenging to protect the integrity of the DMA addresses and
support the pointer arithmetic. Our study in §4 shows that
even benign devices frequently add an offset to the DMA
pointers given by kernel drivers and use the new pointer with

Memory
Object

I/O Buffer

IOMMU

1

2

Peripheral
Devices

Authenticator
Integrity
Check

Bound
Check

APAC
Pointer

Allocate Object

Kernel

Generate Metadata

Sign Pointer

APAC Pointer

4

SignatureBaseSignature Offset

SignatureBaseSignature Offset+XInsert Metadata

3

6I/O Bus

5

Map I/O Buffer

Metadata
Table

7

Kernel Changes

Figure 3: DMAAUTH workflow. Green-colored blocks are
DMAAUTH components. DMAAUTH contains two parts: kernel
changes and an Authenticator hardware on the I/O bus to
intercept and check all DMA requests. DMAAUTH works with
or without IOMMU.

offset for DMA. Traditional pointer integrity-based technique
is not compatible with pointer arithmetic. In other words, all
these offset pointers will fail the pointer integrity check and
are considered illegal. Therefore, we need to propose a new
technique that can protect DMA pointer integrity and, at the
same time, is compatible with pointer arithmetic.

5.2 Design Overview

To defend against DMA attacks, it is essential for the kernel
to gain control of these DMA pointers, even after passing
them to the device. To achieve this, inspired by ARM pointer
authentication (PA), our key insight is that the kernel can sign
all DMA pointers with secret keys that are inaccessible to
the devices. When receiving DMA requests, the hardware
Authenticator on the I/O bus checks the signature of DMA
pointers. The devices don’t have secret keys and thus cannot
forge signed pointers. Therefore, the kernel has complete
control of the DMA pointers and overcomes Challenge-1.

Unfortunately, ARM PA cannot be used directly due to
the pointer arithmetic requirements. As shown in §4, devices
often add or subtract an offset from a legal pointer and use it
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to access memory. ARM PA signs the whole pointer and does
not allow any changes to the pointer. As a result, the pointers
with pointer arithmetic fail the integrity check, disabling legal
memory accesses. To solve this problem, we propose a partial
pointer authentication technique named Arithmetic-capable
Pointer Authentication (APAC), which only signs the high bits
and leaves the low bits for arithmetic, resolving Challenge-2.

Combining the above design and the technique, we propose
DMAAUTH, which is a hardware-software co-design for de-
fending against DMA attacks. More specifically, DMAAUTH
uses the APAC technique to sign DMA pointers on the kernel
side before passing them to peripheral devices. DMAAUTH
also places the Authenticator hardware on I/O buses to inter-
cept all DMA memory accesses, as shown in Figure 3. As
APAC supports pointer arithmetic, DMA memory accesses
by de-referencing the signed pointer directly or with offsets
can pass the integrity checks, and the memory accesses are
permitted. The forged DMA pointers or beyond-range offsets
fail the integrity check, and the memory accesses are denied.
DMAAUTH workflow. DMAAUTH works with or without
IOMMU. We use Figure 3 to illustrate how DMAAUTH works
with and without IOMMU. Firstly, the kernel prepares the
APAC pointer in the pre-transfer stage. ❶ When a device
requires memory, the OS kernel allocates an object for I/O
purposes, but only part of the object (the block mark I/O
Buffer in Figure 3) should be allowed to be accessed by the
device. But the rest of the object, along with the mapped page
(colored red in Figure 3), is exposed to the peripheral, leading
to sub-page attacks [3]. ❷ After memory allocation, the ker-
nel explicitly maps the buffer to the page and gets the DMA
pointer, which is a physical address without IOMMU, and
an IOVA if IOMMU is enabled. ❸ According to the mapped
buffer, the protected kernel generates the per-mapping meta-
data, which contains the bounds of the mapped buffer and
a random identifier. ❹ Next, the protected kernel signs the
DMA pointer using the whole metadata, to protect both the
pointer and the metadata. The signed APAC pointer is then
ready to be passed to the device. ❺ The metadata is stored
in the corresponding entry, ready to be referred to by the
DMAAUTH hardware. All metadata is kept in the Authentica-
tor’s dedicated memory, which can never be leaked even if the
peripheral hijacks the data flow, providing extra resilience.

Then, the peripheral takes over the in-transfer stage and
uses either the guarded pointer directly or with offsets as DMA
addresses. ❻ When intercepting the DMA memory accesses,
the Authenticator on the I/O bus first fetches the metadata,
then uses the whole metadata entry to authenticate the pointer
signature to determine whether the pointer is forged by a
malicious peripheral or has been outdated. Moreover, the Au-
thenticator further uses the bounds in the metadata to check
whether the access is within legal ranges. ❼ Authenticator
strips off the signature from the APAC pointer, forming a
legal physical address or IOVA to proceed with the requested
data access for the peripheral if the pointer passes the integrity

and bound checks. This authentication process requires no
participation of the CPU and the OS kernel. When the periph-
eral finishes the actual data transfer, the OS kernel continues
the post-transfer stage and cleans the mappings.
Fulfill design goals. For security, DMAAUTH encodes the
signature of the pointer into the high bits to form the APAC
pointer, which is used to enforce the pointer integrity (§5.3).
Moreover, DMAAUTH uses the bounds to defeat spatial attacks
(e.g., sub-page attacks) and the identifier to defeat temporal
attacks (e.g., deferred-invalidation attacks), as detailed in §5.4.
Therefore, DMAAUTH outperforms IOMMU and defeats more
DMA attacks. Besides, the key of DMAAUTH is stored in
dedicated registers rather than memory and hence cannot be
stolen by peripherals, thwarting pointer forgery attacks even
when the adversary has access permission to the metadata.
Once the metadata is stored in the Authenticator, it can never
fetched and leaked to the peripheral, providing extra exploit
tolerance. Therefore, DMAAUTH achieves Goal-1.

For transparency, when using table-gathered metadata,
DMAAUTH requires less than 100 LoC changes in the Linux
kernel and does not need to change the device driver at all.
§6 shows that the Authenticator can be easily inserted be-
tween I/O buses and the memory to form a protected SoC de-
sign. Moreover, DMAAUTH is fully compatible with IOMMU.
Therefore, DMAAUTH realizes Goal-2. DMAAUTH can be ap-
plied to different CPU architectures, such as ARM, RISC-V,
and AMD64, as long as the QARMA is implemented.

For lightweight, §7.2 shows that DMAAUTH outperforms
the deferred IOMMU scheme by ~80% in throughput and
~70% in CPU consumption, making it a better solution to be
applied to the actual production environment.

5.3 Arithmetic-capable Pointer Authentication
As mentioned, we propose a novel pointer authentication
technique named Arithmetic-capable Pointer Authentication
(APAC) to protect the pointer integrity while allowing pointer
arithmetic. The basic idea of APAC is to sign only the high
bits and leave the lower bits for pointer arithmetic. In the
following, we give details on the APAC-pointer format and
the signing/authentication steps.
Pointer format. As shown in Figure 4, the APAC pointer
consists of the following fields.

• A signature field holds the S-bit signature of the pointer.
• A base field to hold the 2n-aligned lower bound of the

mapped buffer.
• An offset field to hold the low bits of the addresses, acting

as the offset within the buffer.
The signature length is S bits defined by SoC designers.

The rest L bits are used to store the physical address, where
S+L = 64. The offset length is decided at the DMA mapping
site. The protected DMA mapping API gets the size and DMA
address of the mapped buffer, up-rounds the size to 2n, and
uses the n as the offset length stored in the metadata.
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Figure 4: APAC pointer format. The signature of the pointer is
calculated with the base, the metadata generated at mapping
time, and the encryption key. The offset bits are not used for
pointer authentication, thus supporting pointer arithmetic.

Pointer signing. The kernel performs the pointer signing dur-
ing device memory allocation. As shown in Figure 4, After
deciding the offset length, the DMAAUTH-protected kernel
uses the base bits to sign and authenticate a pointer while
skipping the offset bits. In this way, the devices can perform
pointer arithmetic, which only changes the offset bits and
doesn’t impact the signature. Therefore, APAC pointers sup-
port pointer arithmetic while protecting the pointer integrity.

More specifically, the protected kernel takes the base field
as the input of the QARMA encryption engine to generate the
pointer signature. The other two inputs are the identifier in
the per-mapping metadata and an encryption key. Note that
the 128-bit metadata is transformed into a 64-bit modifier by
XORing the high 64 bits and the low 64 bits to fit into the
QARMA64 input. Next, DMAAUTH trunks the signature into
S bits and embeds it into unused high bits of the DMA pointer.
After these steps, the APAC pointer is ready to be transferred
to the peripheral device for DMA purposes.

Pointer authentication. Pointer authentication is conducted
by the DMA hardware when the peripherals launch the DMA
memory access using the APAC pointers. DMAAUTH uses the
signature in the pointer to locate and fetch the metadata from
memory (detailed in §5.4). Once the metadata is fetched, the
Authenticator gets the offset length and starts to authenticate
the pointer to find out whether the pointer is forged by a
peripheral, out-of-bound, or accessing unmapped memory.

If the peripheral device adds a legitimate offset to the APAC
pointer, the base area of the pointer stays the same, and hence
so is the signature re-calculated by the Authenticator. Once
the pointer arithmetic results in overflow or underflow of the
offset field, it will change the base of the APAC pointer. As a
result, the whole pointer fails the authentication, and illegal
memory access is denied. Using the APAC technique, the
kernel has complete control over the DMA pointers.

Key management. DMAAUTH stores the key in both the
CPU and the DMAAUTH hardware. In the CPU, DMAAUTH
adds a key register to hold the key for the kernel to generate
DMA pointers’ signatures. In the Authenticator, the key is

also stored to authenticate APAC pointers. During each boot
time, a random value is generated and stored in the CPU key
register using specialized instructions and in the key register
of Authenticator hardware via MMIO write. Once initialized,
these two registers holding the keys can never be accessed.
Physical address confidentiality. When using DMAAUTH
only, the APAC pointer is based on a physical address. The
confidentiality of the physical address can be achieved by
adding a random offset to the physical address before signing
the APAC pointer. The random offset is stored in the metadata
and is used to recover the physical address when the APAC
pointer is authenticated. When both DMAAUTH and IOMMU
are enabled, confidentiality is guaranteed by the IOMMU.

5.4 Per-Mapping Metadata

The kernel gains full control over the DMA pointers with
the APAC technique. However, the unused bits in the pointer
are not enough to encode a pointer’s bounds information.
While these bounds information are essential for spatial pro-
tection. To resolve this problem, our key observation is that
the kernel uses memory DMA mapping/unmapping APIs to
grant/revoke memory from devices. Therefore, we propose
generating metadata for each memory mapping and storing
the bounds in the metadata for spatial protection. Moreover,
we also store a unique per-mapping identifier in the metadata
to provide temporal protection. Note that we propose using
per-mapping metadata rather than per-buffer metadata, as the
latter cannot differentiate two mappings on the same buffer,
leading to temporal attacks.

With the per-mapping metadata, when signing the DMA
pointers, DMAAUTH fetches the metadata and uses it as the
modifier for generating the signature. When the device ac-
cesses memory with APAC pointers, the Authenticator checks
the signature to defeat any temporal attacks. Moreover, while
performing the integrity check, DMAAUTH hardware further
fetches the bounds from the metadata and performs a bound
check to defeat any spatial attacks. Here resides the chal-
lenge to maintain and locate the corresponding metadata of
an APAC pointer. In the following, we first discuss the meta-
data format and then give the metadata positioning scheme.

5.4.1 Metadata Format

Each metadata is 128-bit, consisting of 5 fields in Figure 5a.
• The R/W permission field. This field contains two bits

and encodes three permission types: read-only, write-
only, and bidirectional. The Authenticator checks this
field to thwart unprivileged read or write on the mapped
buffers for each DMA.

• The offset length field marks the length of offset field
in the APAC pointer, which is 5-bit, supporting 4GiB
buffer size. This field informs the DMAAUTH hardware
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(a) The format of a per-mapping metadata entry.

...

BaseSignature Offset

...
Metadata #N

Metadata #0Metadata
TableIndex N = Signature

DMA Authenticator

(b) Metadata positioning. DMAAUTH uses the signature embedded
in the APAC pointer to index the metadata in the metadata table.

Figure 5: Metadata format and the positioning scheme.

of the length of base field that should be taken into the
authentication when using the pointer for DMA.

• The identifier is a (121−2L)-bit random number gener-
ated when the kernel sets up the mapping. This field also
resolves signature hash collisions of APAC pointers.

• The L-bit lower bound of the mapped buffer.
• The L-bit upper bound of the mapped buffer.
The two bound fields provide byte-level bounds for at most

L-bit physical address, allowing mapping any part of the phys-
ical memory region for the peripheral devices.

5.4.2 Metadata Positioning

As mentioned, the Authenticator intercepts the DMA and per-
forms integrity and bound checking. Then, the APAC pointer
is used to locate the metadata of the corresponding mapped
buffer. Our key observation is that the number of the coexist-
ing mapped DMA buffers is small (≤ 435 in Table 1.), which
is suitable to be held in a dedicated metadata table.

As shown in Figure 5b, we integrate dedicated storage in
the Authenticator to hold the metadata table and make the
metadata table write-only to avoid metadata leakage. The
APAC pointer holds S-bit signature and uniquely locates the
metadata in the table, which holds 2S metadata entries.

In the pre-transfer stage (§2.1), the DMAAUTH-protected
kernel is responsible for filling the metadata of a newly
mapped buffer into the metadata table and avoiding index
collision. If the identifier causes index collision, another ran-
dom identifier is generated. Finally, the metadata is written to
the corresponding entry in the metadata table via MMIO.

Then, in the in-transfer (§2.1), the Authenticator uses the
signature in the APAC pointer to index the metadata and uses
it to authenticate the pointer and check the bounds.
Select signature length. SoC designers can easily customize
the size of the metadata table to achieve a balance between
circuit cost and supported coexisting buffers. For embedded
devices that don’t have to support massive coexisting buffers,
the signature length can be set to 10. The corresponding
metadata table holds 210 entries, requiring only 16KiB extra
SRAM storage. For desktop SoCs, the metadata table can be

set to 216 entries and requires 1MiB SRAM, which is small
compared to the L3 cache (128MiB for Ryzen 7950X3D).
For server SoCs, whose L3 cache is even larger (1.1GiB for
EPYC 9684X), DMAAUTH can have up to 22-bit signature
with 222 entries, leaving 42 bits to support 4TiB DRAM.
Advantages. For each DMA memory access, the Authenti-
cator requires only one extra memory access to authenticate
an APAC pointer. In contrast, the common IOMMU has to
access the main memory four or five times for each address
translation. As a result, DMAAUTH has a significantly better
performance compared with IOMMU-protected systems, as
will be elaborated in §7.2. Moreover, DMAAUTH requires less
than 100 LoC changes in the Linux kernel and requires no
change on the device driver at all. Therefore, DMAAUTH is
totally transparent to the driver developers.

5.5 Working Together with IOMMU

DMAAUTH is designed to be fully transparent to the IOVA
translation process and thus is compatible with IOMMU.
IOVA translation. As shown in Figure 3, the Authenticator is
placed closer to the peripherals than the IOMMU. The IOVA-
based APAC pointers are generated the same way as physical-
address-based APAC pointers. In the pre-transfer procedure,
the metadata generation and pointer signing are conducted
after the mapping is created by walking the IOMMU page
table. In the post-transfer procedure, the signature is checked
and stripped off by the Authenticator before being sent to the
IOMMU for IOVA translation. The hardware and software co-
design of the DMAAUTH is interposed between the IOMMU
mapping-creating process and the IOMMU hardware transla-
tion process without changing the input of both two processes.
In this way, we ensure the transparency to the IOMMU.
Providing ATS. The Authenticator hardware is designed to
intercept the ATS request(§2.2) sent by the peripherals and
return a corresponding APAC physical pointer. In the pre-
transfer procedure, this requires the kernel to add the metadata
of both the physical address and IOVA to the metadata table.
To correctly translate an APAC IOVA to an APAC physical
address, we use another table for signature translation.

The underlying limitation is that the mapped buffer using
ATS has to be continuous in both the IOVA space and physi-
cal address space. This is already guaranteed in the dma_map

APIs in order to use IOMMU. We just need to instruct the
dma_alloc APIs to allocate physically contiguous memory
using the kmalloc instead of vmalloc.

6 DMAAUTH Implementation

DMAAUTH contains the Authenticator implementation and
the kernel changes, as shown in Figure 3. We implement
two versions of the Authenticator: the FPGA-based hardware
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Figure 6: Hardware architecture of DMAAUTH. The green
parts in the picture are the control and data path of the Au-
thenticator. The blocks are connected via AXI protocol and
are scheduled to transfer data by the AXI interconnects.

version and the QEMU-based emulator version. We imple-
ment DMAAUTH on Linux v6.1 kernel and implement the Au-
thenticator to achieve fine-grained and transparent protection
against malicious DMA-capable peripherals. The FPGA Au-
thenticator is implemented with ~1500 lines of Verilog/Chisel.
The emulator version adds ~200 lines of C code. The kernel
changes are ~100 LoC with zero change on the device drivers.

We select the PCIe bus as our protected target for its high
scalability and performance. We first construct a fully func-
tional RISC-V SoC with PCIe 3.0 x8 based on the RocketChip
core [7] as our baseline. We add pointer signing instruction
pacdma to the core and Authenticator in Verilog to the bus,
forming the DMAAUTH secure SoC prototype.

6.1 Authenticator Implementation

PCIe-customizable SoC implementation. To realize
DMAAUTH on real FPGA, we first implement a fully-fledged
RISC-V SoC with customizable PCIe support.The simplified
schematic diagram is shown in Figure 6. The PCIe IP is of-
ficially supported by Xilinx and can be easily customized
in Vivado GUI, making our design scalable for future re-
search. However, the IP’s lack of document support hinders it
from being adopted by open-source SoC designs. We reverse-
engineered the Xilinx PetaLinux3 to configure the PCIe IP
correctly, connect it to our SoC, and create the device tree.

The components in our design are connected using the
AXI protocol, which is responsible for the data transfer dis-
patching and cross-clock domain synchronization. For data
transfers, the AXI Interconnect ❶ receives access from the
CPU and the DMA and determines whether it is access to the
main memory or MMIO space, according to the address. If
the address resides in the main memory region, the access is
taken over by ❹ to read/write the main memory; otherwise,
the access is determined as MMIO and guided to perform
read/write access to the device registers by ❷. As the threat in
our model, the PCIe device sends DMA requests to ❸, which
can further forward the access to ❹ to access the DRAM.

3https://digilent.com/reference/software/petalinux

Synchronization between clock domains is also challenging
since the design requires three different clock sources: CPU
core clock, DDR4 clock, and PCIe clock. In particular, the
PCIe clock requires a higher-quality differential signal, so we
provide the signal with an external clock generator soldered
on an FMC adapter. We use ❹ to synchronize between the
CPU core and DDR4 DRAM. The synchronization between
the CPU core and the PCIe is ensured by ❷ and ❸.

We use the DefaultConfig of the RocketChip generator,
which has one BigCore with 16 KiB, 4-way set-associative
instruction and data caches. The connection between the PCIe
IP and the memory is limited to 100MHz with 64-bit data
width to fully expose the throughput overhead introduced by
the Authenticator. By intentionally making the host slower
than the peripherals, we ensure that DMAAUTH acts as the
system’s bottleneck, facilitating a fair evaluation of its perfor-
mance impact.
FPGA-based Authenticator implementation. As shown in
Figure 6, the Verilog-implemented Authenticator is placed
between the PCIe IP and next-level AXI interconnect to inter-
cept and check all the DMA pointers from the PCIe bus. We
decide to use 10-bit signature and 210 metadata table entries
because the single RocketChip core is more suitable for the
peripherals in Table 1, which requires only ≤ 435 entries.

Firstly, the Authenticator has an AXI subordinate interface
for the CPU to control it with MMIO. When the CPU accesses
a specified range of addresses, it can write the key of the
Authenticator and the metadata in the corresponding metadata
entry in the metadata table, an FPGA block memory (BRAM)
in our implementation. Notice that the CPU cannot directly
read the metadata and key using MMIO to avoid metadata
and key leakage. Especially, reading the occupied metadata
entry returns 0x1, and otherwise 0x0, to allow the CPU and
the kernel to resolve signature hash collision.

The Authenticator has another AXI subordinate interface to
receive transactions from the PCIe IP. When the PCIe devices
put Transaction Layer Packets (TLP) on the bus, the PCIe
transforms the TLP into AXI access and then forwards it to
the Authenticator. Notice that since the APAC pointers are
transferred from the host to the peripherals, the peripherals
use APAC pointers as target TLP addresses to perform DMA,
and so are the AXI addresses sent by the PCIe IP.

Once the APAC pointer reaches the Authenticator, the au-
thentication and bound checking described in step ❻ in Fig-
ure 3 is performed. The Authenticator has an AXI manager
interface, which is responsible for forwarding the legitimate
AXI transaction to the next-level AXI interconnect to perform
DMA (step ❼ in Figure 3) and an interrupt signal to notify
the CPU when the Authenticator detects a malicious DMA
transaction. Once the interrupt is sent to the CPU, the cor-
responding trap handler in the protected kernel will further
control the PCIe IP, forcing the peripheral to go offline.

We pipeline the authentication and data beats to reduce
throughput overhead. Specifically, an AXI read burst consists
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Figure 7: DMA read data transfer of the Authenticator. The
diagram shows four AXI data bursts. The Authenticator re-
ceives DMAs launched by peripherals from the ports starting
with s and forwards them to the next level via the m ports.

of two processes: address handshake and data beats, which
can be overlapped and pipelined as shown in Figure 7.

We apply two AXI-related optimizations. First, when the
peripheral starts address handshake by setting s_arvalid, the
Authenticator sets s_arready to finish it if the QARMA en-
gine is not busy, as indicated at ❶ in Figure 7. The m_rready is
set to allow the data beats when the authentication is finished
at ❷. Thus, clock cycles between ❶ and ❷ are used to prepare
the required data. Second, the authentication of burst 1 (❸)
is finished during the data beats of burst 0, and hence the
m_rready can be set once the previous data beats are finished
at ❹. So does the authentication of burst 2 and burst 3 (❺, ❻).
These two optimizations pipeline bursts for rapid transfer.

IOMMU baseline implementation. To ensure fair compari-
son in evaluation, we introduce IOMMU to our SoC baseline.
The RISC-V Foundation recently released its IOMMU spec-
ification [1]. But the standard hasn’t been implemented in
the RocketChip generator [7]. We extend the IOMMU on
CVA6 [59] to our SoC and keep only a 1-level device table
and a 3-level page table in order to ensure the baseline has the
minimum translation latency required by the specification.

We config the IOMMU to have 256 IOTLB entries to en-
sure that the IOTLB pressure will not be the bottleneck for
the system. The AXI-related optimizations are also applied
to pipeline handshakes and data beats to achieve better per-
formance. Additionally, the IOTLB flush will not block the
CPU, saving ~2000 cycles CPU time [3, 5] for each flush.

After the above optimization, the IOMMU has only 5.6%
overhead on transfer throughput and 5.8% CPU time over-
head using deferred invalidation. This overhead is lower than
commercially applied IOMMUs, which have ~10% overhead
in throughput and ~10% in CPU time [33]. The IOMMU
baseline without any logic other than address translation and
IOTLB caching has the lower-bound overhead and is used as
the baseline for the performance comparison with DMAAUTH.

QEMU-based Authenticator Implementation. We also im-
plement the Authenticator on RISC-V and ARM64 QEMU to
show its cross-architecture compatibility and IOMMU com-
patibility. QEMU uses dma_memory_rw to perform DMA data
transfer. This API is responsible for translating the DMA
pointer (IOVA when IOMMU is enabled) into a physical

1 MemTxResult dma_memory_rw(AddressSpace *as, dma_addr_t addr, void
*buf, dma_addr_t len, DMADirection dir, MemTxAttrs attrs) {↪→

2 dma_barrier(as, dir);
3 dma_auth(addr, len, metadata);// Check signature and bounds.
4 addr = lower_54_bits(addr); // Strip the signature.
5 return dma_memory_rw_relaxed(as, addr, buf, len, dir, attrs);
6 }

Figure 8: APAC authentication in QEMU emulation. The
signature is removed to make DMAAUTH transparent to the
lower-level DMA logic.

address and read/write memory using it. Before the transla-
tion, authentication logic checks the access and strips off the
signature on the high bits, as shown in Figure 8.
PAC Extension. To accelerate the APAC pointer signing
process, we introduce pointer signing instruction extension
pacdma to the RocketChip. pacdma rd, rs1, rs2 takes the
rs1 as the pointer and rs2 as the modifier to generate the
APAC pointer and stores it to rd. The rs1 is preprocessed to
remove the offset part, and the rs2 is preprocessed by XOR-
ing the higher 64 bits and lower 64 bits of the metadata. The
QARMA engine is pipelined into 5 clock cycles to meet tim-
ing constraints and embedded as Rocket custom coprocessor.

6.2 Kernel Changes

The Linux kernel provides relatively uniform APIs for DMA
operations, bringing convenience to our implementation. In
general, the kernel uses the dma_map series APIs to grant ac-
cess permission to the peripherals explicitly. As shown in
Figure 9, the function checks whether the IOMMU is enabled
and dispatches the DMA operation (Line 3-6) to call the di-
rect helper function or creates an IOMMU mapping entry for
IOVA translation. This dispatching corresponds to step ❷ in
Figure 3. The driver uses the dma_unmap APIs to withdraw the
access right from the peripheral. These functions also check
whether the IOMMU is enabled and remove the translation
entry from the IOMMU page table if IOMMU is enabled, as
shown in Figure 10 (Line 5-8). Drivers utilize these APIs, so
no modification of the driver source code is required.
Create Mapping. The dma_map takes an existing buffer as
input and returns the corresponding DMA pointer as output.
We let the API perform all the originally required operations.
But before returning, the raw DMA pointer (physical address
or IOVA) is signed with helper function dma_auth_map using
the highlighted calls on Line 7 of Figure 9.

This metadata generation and pointer signing procedure
is encapsulated in the helper function dma_auth_map. As de-
picted in Figure 3, the per-mapping metadata is generated
(step ❸) in line 11 before calculating the APAC pointer (step
❹) in line 14. The helper function is also responsible for re-
generating the identifier to resolve collision in the metadata
table. Finally, in line 15, the metadata is inserted into the
metadata table to be checked by Authenticator (step ❺).
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1 dma_addr_t dma_map_page_attrs(struct device *dev, struct page
*page, size_t offset, size_t size, enum dma_data_direction
dir, unsigned long attrs) {

↪→
↪→

2 ...
3 if (dma_map_direct(dev, ops)) // No IOMMU, direct map.
4 addr = dma_direct_map_page(dev,page,offset,size,dir,attrs);
5 else // IOMMU enabled, add mapping in IOMMU page table.
6 addr = ops->map_page(dev, page, offset, size, dir, attrs);
7 addr = dma_auth_map(dev, addr, size, attrs);
8 return addr;
9 }

10 dma_addr_t dma_auth_map(struct device *dev, dma_addr_t addr,
size_t size, unsigned long attrs) {↪→

11 struct metadata *metadata = dma_auth_metadata(addr,size,attrs);
12 uint64_t base = dma_auth_mask(addr, metadata->offset_length);
13 while (dma_auth_slot_taken(apac >> 54)) // If slot occupied.
14 apac = dma_auth_apac(base, reshuffle_identifier(metadata));
15 dma_auth_write_metadata(metadata, apac >> 54);
16 return apac;
17 }

Figure 9: Generate an APAC pointer. The DMA pointer gen-
erated by the corresponding mapping function is an input to
produce the signature with newly generated metadata.

1 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir, unsigned long
attrs) {

↪→
↪→

2 const struct dma_map_ops *ops = get_dma_ops(dev);
3 addr = dma_auth_unmap(addr); // R/W=0, shuffle identifier.
4 ...
5 if (dma_map_direct(dev, ops))//IOMMU disabled,direct unmap.
6 dma_auth_unmap_page(dev, addr, size, dir, attrs);
7 else if (ops->unmap_page) // IOMMU enabled, clear mapping.
8 ops->unmap_page(dev, addr, size, dir, attrs);
9 }

Figure 10: Withdraw access right. After resetting the R/W
bits and changing the identifier, any DMA corresponding to
the metadata will be considered to be outdated and malicious.

Withdrawing Access Right. The access right towards the
mapped buffer should be withdrawn immediately from the
peripherals when unmapping the buffer, as shown in Line 3
of Figure 10. To achieve this goal, we disable all access using
the outdated APAC pointer by resetting the R/W bits and
rerandomizing the identifier. Without both the read and write
permission, the peripheral has no access right to the unmapped
memory region. This invalidation takes effect immediately,
resolving the temporal vulnerability caused by the deferred
invalidation. The direct unmap process or IOMMU-related
unmap is called to clean up the mapping (Lines 5-8).

7 Evaluation

In this section, we evaluate the security and performance of
DMAAUTH. The result shows that DMAAUTH defeats various
DMA attacks while introducing low-performance overhead.

7.1 Security Evaluation
We evaluate the security capability of DMAAUTH using six
DMA attacks of different types, including the sub-page and
deferred-invalidation attack, as shown in Table 2. The evalua-
tion results show that DMAAUTH can defeat all of them.

Network Stack
non-linear part

unsigned char *data Data Payload

void *destructor_arg

skb_frag_t frags[N];

callback destructor
struct ubuf_infostruct sk_buff

struct page

Network Stack linear part

struct skb_shared_info

...

...

...

...

...

...

Figure 11: Memory layout of sk_buff structure. This data
structure has been frequently exploited for sub-page attacks.

Table 2: Security evaluation.

Attack Information Security Analysis

Attacks Type Bare IOMMU Ours

❶ Full Memory Dump Arbitrary Read ✗ ✓ ✓
❷ Denial of Service Sub-page Write ✗ ✗ ✓
❸ Data Pointer Tampering Sub-page Write ✗ ✗ ✓
❹ Control Flow Hijack Sub-page Write ✗ ✗ ✓
❺ Information Leak Sub-page Read ✗ ✗ ✓
❻ Access Unmapped Temporal ✗ ✓✗ ✓

For the evaluation, we set up three settings based on Linux
6.1: one without IOMMU protection, one with IOMMU en-
abled, and one with DMAAUTH. We use an emulated malicious
E1000E, which is adopted as the base of the Thunderclap plat-
form to perform DMA attacks [31].

7.1.1 Defeating Spatial Attacks

We define a system to hold spatial security if the peripheral
can only access the memory area that is mapped for it, i.e.,
realizing byte-level bounds to mitigate sub-page vulnerability.

Cases ❷ ❸ ❹ ❺ are the sub-page attacks that can be per-
formed when IOMMU is enabled. All these attacks are imple-
mented based on the structure sk_buff, a core implementation
of the Linux network subsystem. As shown in Figure 11, the
sk_buff struct carries data in its data field, which should be
mapped to the NIC in streaming DMA. Different from previ-
ous works believing sk_buff is not an attack surface, further
research [3] revealed that the data field of sk_buff has its
memory organization with a linear part and a non-linear part.
The descriptor of the non-linear part is stored immediately
after the linear part in physical memory. These metadata struc-
tures are exposed to the NIC, making the DMA attack more
powerful. In the following, we discuss these attacks in detail.
Case ❶: Full memory dump. The malicious device can
easily dump the whole memory for the system without DMA
protection. With IOMMU, the device can only access the
mapped page, and this attack is defeated. DMAAUTH signs
and authenticates all the DMA pointers and strictly restricts
the pointers to their bounds, defeating the attack.
Case ❷: Denial of service. This attack is straightforward
for a malicious NIC. It simply needs to blindly overwrite the
entire page where the DMA buffer is located. Our experiments
show that the host kernel always panics and crashes due to
overwriting critical data pointers, even with the IOMMU.
Case ❸ Data pointer tampering and ❹ control flow hijack
are similar. While the former one corrupts data pointers, while
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the latter corrupts the function pointer. More specifically,
for the control flow attack, the attacker first forges a fake
ubuf_info structure in a writable area, holding a callback
pointer with a code pointer to the intended malicious gadget.
Next, the attacker overwrites the pointer in skb_shared_info

with the address of the fake structure. This way, the attacker
can launch a control flow hijack to execute any kernel code.
Sadly, these two attacks cannot be defeated by IOMMU.
Case ❺: Information leak. In this case, the attacker can
exploit data pointers in struct skb_shared_info to leak im-
portant information, such as the kernel heap base and the base
of the vmemmap segment. This information can bypass kernel
ALSR. Again, IOMMU cannot prevent this leakage.

In our experiments, DMAAUTH can defeat the attacks in
❷ ❸ ❹ ❺. More specifically, the out-of-bounds reads and
writes of DMA buffers are blocked by DMAAUTH’s byte-level
granularity (compared to the page-grained IOMMU). In this
way, DMA is strictly restricted to the mapped buffer.

7.1.2 Defeating Temporal Attacks

As mentioned in §2.2, the OS kernels may sacrifice the IOTLB
consistency to reach better performance in practice because
of the unacceptable overhead introduced by IOTLB flushing
[5, 26, 29, 50]. This brings deferred invalidation vulnerability
to the system. As for the system without IOMMU protection,
no temporal protection is provided, and the peripheral can
access a specific memory area at any time.
Case ❻: Access unmapped memory areas. After a deferred
invalidation, peripherals can still access the unmapped pages
in a time window. Even if the driver checks all critical data
after unmapping, there would still be a time window that mali-
cious peripherals can tamper with some critical metadata after
the checking. If the unmapped memory area is reallocated for
other objects, the peripheral can also access the newly allo-
cated object to perform further attacks. When using the strict
mode, IOMMU can defeat such attacks but will introduce
unacceptable performance overhead.

With DMAAUTH, the metadata update takes effect and
invalidates the outdated APAC pointer immediately by
re-randomizing the identifier and resetting R/W bits, and
achieves temporal security with or without IOMMU.

7.1.3 Defeating Pointer Forgery and Substitution

The malicious peripheral may try to forge a valid pointer to by-
pass the pointer authentication conducted by the DMAAUTH.
But without the 128-bit key stored in dedicated DMAAUTH
and CPU registers, it can only try to break the authentication
by iterating different signatures in brute force, which has a
success rate of 1

2S and requires 2S−1 attempts on average. Any
failed attempts in the brute force break will trigger an excep-
tion to the CPU, notifying to disable the malicious device.

The substitution attack is prevented because the outdated
APAC pointer is invalidated since unmapping. Because our
metadata table is write-only, the attacker cannot obtain the
metadata to perform substitution. The write-only metadata,
random identifier, and R/W bits realize defense in depth.

7.2 Overhead Evaluation

We evaluate the performance of the DMAAUTH based on our
FPGA prototype elaborated in §6.1. We use an FMC adapter
to connect our SoC to the real peripherals: an E1000E NIC
and an NVMe SSD. The workload used in performance eval-
uation is the same as §4. We also compare the hardware
overhead of DMAAUTH with the IOMMU4. We noticed that
the Rocketchip random generator is the bottleneck and causes
large performance degradation, so we use jiffies as the ran-
dom source to reduce the overhead.

7.2.1 NVMe SSD Performance

The NVMe SSDs are ubiquitous nowadays and are widely
used in data centers and personal computers. We test the per-
formance influence of DMAAUTH on the SAMSUNG 970
EVO Plus. With the tool fio, we test the sequential and ran-
dom read/write performance with basic block sizing from
4KB to 4MiB by sending 1GiB of data in total with four
threads.
Throughput evaluation. The throughput evaluation is based
on the transfer speed the SSD can reach under different base
block sizes. The results in Figures 12a and 12b reveal that the
DMAAUTH introduces 1.4% overhead on average.
CPU runtime evaluation. DMAAUTH also introduces CPU
runtime overhead for the metadata generation and APAC sign-
ing processes. We evaluate the cost by measuring the CPU
time required to finish. The results in Figures 12c and 12d
reveal that DMAAUTH introduces 1.0% extra CPU time.

7.2.2 Network Card Performance

The Intel E1000E NIC has been proved to be an attack surface
for DMA attacks [3]. We use a real E1000E card (Intel 82574)
to test the performance influence of DMAAUTH on network
cards. We use the network benchmark tool iperf3 to send
UDP packets from 16 to 1460 bytes to test UDP transfer
performance; we also use this tool to perform TCP transfer
tests in TCP window sizes ranging from 1KB to 128KB to
reveal the performance degradation on the TCP stack.
Throughput evaluation. The TCP transfer throughput is
shown in Figure 13a. The UDP transfer throughput is shown
in Figure 13b. The DMAAUTH introduces 1.2% overhead in
TCP throughput and < 0.1% overhead in UDP throughput.

4https://github.com/zero-day-labs/riscv-iommu
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(a) Throughput in sequential and random read test. The DMAAUTH’s
average overhead is 1.3%, which is 82.7% less than IOMMU. The
worst-case overhead of DMAAUTH is 8.6%.
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(b) Throughput in sequential and random write test. The DMAAUTH
incurs an average 1.4% overhead and is 79.3% less than IOMMU. The
worst-case overhead brought by DMAAUTH is 3.8%.
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(c) CPU time in sequential and random read test. The DMAAUTH
operates with an average 1.1% overhead and is 81.9% smaller than
IOMMU. The worst-case overhead introduced by DMAAUTH is 8.6%.
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(d) CPU time in the sequential and random write test. The DMAAUTH
carries an average 0.9% overhead, which is 81.2% less than IOMMU.
DMAAUTH’s worst-case overhead is 5.3%.

Figure 12: Performance evaluation on NVMe SSD. Combining the read and write test, the DMAAUTH introduces a 1.4% overhead
in throughput and 1.0% overhead in CPU runtime on average, which are 81.0% and 81.6% less than IOMMU respectively.

Table 3: Hardware Resource Overhead.

Component LUTs FFs BRAM

Bare SoC 69073 58605 58.5
DMAAUTH 4127 (5.9%) 4306 (7.3%) 4.0 (6.83%)
IOMMU 28432 (41.1%) 19477 (33.2%) 0

CPU runtime evaluation. We evaluate the CPU runtime
head by measuring the CPU time required to finish transfer-
ring 1Gbits data. In the UDP transfer speed test, the CPU
time equals the total transfer time, so it can be revealed in Fig-
ure 13b. The TCP runtime overhead is shown in Figure 13c.
The DMAAUTH introduces 2.6% overhead in CPU time.

7.2.3 Comparison with IOMMU

As illustrated in §6.1, the IOMMU baseline ported to our
SoC has 5.6% throughput overhead and 5.8% CPU runtime
overhead, which is faster than the commercially applied SoCs’
IOMMUs for its simplicity [11, 33]. Our evaluation shows
that DMAAUTH only introduces an average 1.0% throughput
degradation based on the NVMe SSD and E1000E NIC. The
CPU runtime overhead is 1.8%. When the IOMMU operates
in the deferred mode, DMAAUTH is 82.1% faster in throughput
and 68.9% faster in CPU runtime.

We use Vivado5 2022.1 to synthesize the RTL and report
circuit overhead and extra static power consumption as shown
in Table 3. The DMAAUTH introduces 5.9% LUTs, 7.3% FFs,
and 6.83% BRAMs overhead, while the IOMMU introduces
41.1% LUTs, and 33.2% FFs overhead when having 4 IOTLB,
4 DDTC and 4 PDTC entries in LUTs. DMAAUTH’s BRAM
overhead is due to the metadata table, which is used to store
the per-mapping metadata.

5https://www.xilinx.com/products/design-tools/vivado

The SoC equipped with the DMAAUTH consumes 0.575W
static power, which is 0.012W higher than the bare SoC. The
extra power usage is about 2.1% of the bare SoC.

DMAAUTH requires on-chip storage for the metadata table,
and the IOMMU requires on-chip storage to cache IOTLB
and PTE. The SoC designer can adjust the size of the metadata
table considering the number of DMA mappings according to
the chip use case, as described in §5.4.2, to make the overhead
acceptable compared with L3 cache or other on-chip storage.
For the IOMMU, the size of the IOTLB and PTE cache should
also be carefully chosen by SoC designers to balance the
performance and overhead.

8 Related Work

DMA protection. DMA attacks have emerged for decades,
but this threat is sometimes considered an out-of-scope prob-
lem or future work requiring research [16, 41, 45, 48, 57].

For systems with the basic protection of IOMMUs, there
are works to thwart existing attacks using dedicated space
for I/O operations [32], but this approach disables zero-copy
and introduces significant performance overhead (20% CPU
time and up to 25% throughput overhead). DAMN [33] kept
zero-copy and reached better performance (10% throughput
overhead). Kernel bypassing is enabled by DAMN to reach
less CPU time than bare systems that disable such bypassing.
However, the comparison when the bare system enables ker-
nel bypassing is not conducted. DAMN’s approach requires
dedicated modification for each peripheral type and brings
unacceptable manual workloads, making it not realistic to be
applied in real-world OSes. These methods provide the same
security guarantees as DMAAUTH but have larger overhead.

13

https://www.xilinx.com/products/design-tools/vivado


1k 2k 4k 8k 16
k

32
k

64
K

12
8k1k 2k 4k 8k 16

k
32

k
64

K
12

8k

TCP Window Size (Bytes)

0

50

100

150

Th
ro

ug
hp

ut
 (M

bi
ts

/s
)

BareUpload
AuthUpload
IommuUpload

BareDownload
AuthDownload
IommuDownload

(a) TCP throughput test. The average over-
head is 1.21% and is 76.5% smaller. The
worst-case overhead of DMAAUTH is 4.8%.
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(b) UDP throughput test. The average over-
head < 0.1% while the IOMMU has a 3.1%
overhead. The worst-case overhead is 1.8%.
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(c) TCP CPU time test. The average overhead
is 2.6%, which is 65.5% less than IOMMU.
DMAAUTH’s worst-case overhead is 9.0%.

Figure 13: Performance evaluation on E1000E NIC. Combining the TCP and UDP test, the DMAAUTH introduces 0.6% overhead
in throughput and 2.6% overhead in CPU time on average, which are 85.3% and 65.5% less than IOMMU, respectively.

Fundamental modifications to IOMMUs are also proposed
to realize find-grained protection. The novel hardware archi-
tecture is positioned into CHERI to enforce strong protection
against DMA attacks [30]. But this requires radical modifica-
tion towards existing hardware, and has not become available.
Apple Inc. introduced byte-level protection into its IOMMU
standard Device Address Resolution Map (DART) [42]. How-
ever, these solutions lack Linux support and face temporal
vulnerabilities. Modifying hardware to make memory regions
inaccessible for peripherals [35] is viable for embedded sys-
tems but not for time-tested complex OSes. AI-based methods
are also introduced to defeat DMA attacks [19] but bring false
positives and cannot provide deterministic protection. There
have also been static and dynamic analysis tools detecting
spatial and temporal vulnerabilities to help the developers
improve memory hygiene [3].
Pointer integrity. Pointer integrity mechanisms are widely
adopted in protecting embedded systems [43, 62], user space
programs [28, 60], or the OS kernels [55]. It was first used
to ensure control flow integrity by thwarting attackers from
tampering with code pointers via software approaches [24,43,
60,62]. As new security features were introduced into modern
computer systems, an increasing number of mechanisms were
used to ensure pointer integrity, e.g., memory tagging [18] and
pointer authentication [22, 28, 47]. Researchers are working
on pointer integrity mechanisms to ensure better security [20].

However, the DMA attacks confront us with a distinct sce-
nario: the CPU shall not participate in the actual data transfer
procedure, making the methods mentioned above unavailable.
These methods don’t support pointer arithmetic and are thus
incompatible with existing peripherals.
Memory protection. Corrupting memory was the oldest at-
tack in the development of computer science and gave birth
to various delicate exploit techniques and well-designed pro-
tection countermeasures [49, 58, 61].

To provide spatial protection, some mechanisms associate
bound metadata with the objects and perform bound checking
when conducting pointer arithmetic to restrict the pointer in
the object [2, 27, 44, 56]. Some others are pointer-based and
encode metadata into the pointers, using fat pointers [23, 39,
53] to store bound information or store it separately [17, 37],
and check bounds when dereferencing the pointers.

Temporal vulnerabilities are mitigated by associating the
allocation metadata with the allocated object [40, 46] or the
output pointer [36, 38], but recording the metadata for each
object fails to detect outdated pointer dereferences if the same
memory area is reallocated for other objects.

Our mechanism is inspired by these memory-protection
schemes, but it is not limited only to spatial or temporal. To
provide spatial protection, it integrates the bound information
in the metadata and uses redundant spatial information (length
field) to provide extra protection and resilience. Also, each
APAC pointer is associated with a mapped buffer and a write-
only identifier via the signature encoded in the high bits to
defeat temporal attacks and substitution attacks.

9 Conclusion

In this paper, we propose a lightweight pointer integrity-
based security architecture named DMAAUTH, which achieves
byte-grained protection on DMA memory and thus can de-
feat various DMA attacks, including the sub-page and the
deferred-invalidation attacks. According to the findings from
our characterization of DMA behavior, we design the novel
Arithmetic-capable Pointer Authentication technique to en-
sure pointer integrity while allowing pointer arithmetic.

To verify the feasibility and performance of DMAAUTH, we
realize the dedicated hardware Authenticator on the FPGA-
based RISC-V SoC we implemented, which supports cus-
tomizable PCIe. We also implement the Authenticator on
the RISC-V and ARM QEMU to show DMAAUTH’s cross-
architecture capability. The implementation and evaluation
prove that DMAAUTH outperforms IOMMU in both secu-
rity and performance observably while staying transparent to
IOMMU and device drivers.
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